Existence results about the nonlinear Schrödinger-Poisson equations

Jinmyoung Seok

Department of Mathematical Sciences Seoul National University

December 1, 2012

Nonlinear Schrödinger equations (1)

• For $N \ge 2$, consider the following equation

$$-\Delta u + u = |u|^{p-2}u, \quad \lim_{|x| \to \infty} u(x) = 0 \text{ in } \mathbb{R}^N$$
(1)

where $p \in (2, 2^*)$, $2^* = 2N/(N-2)$ if N > 2 and $2^* = \infty$ if N = 2.

• $\tilde{u} \in H^1(\mathbb{R}^N)$ is a solution $\Leftrightarrow \tilde{u}$ is a critical point of the functional

$$I(u) = \int_{\mathbb{R}^N} |\nabla u|^2 + |u|^2 - \frac{1}{p} |u|^p \, dx, \quad u \in H^1(\mathbb{R}^N).$$
(2)

- 31

(4 個) トイヨト イヨト

Nonlinear Schrödinger equations (2)

- There is a positive radial solution and are infinitely many radial solutions of (1) (Strauss, 1977)
- There is no nontrivial solution for $p \ge 2^*$.
- The positive radial solution of (1) is unique (Kwong, 1989)
- Every positive solution of (1) is radially symmetric about some point in ℝ^N (Gidas, Ni and Nirenberg, 1981)
- There exists a k-sign changing radial solution of (1) for given k ∈ N (Bartsch and Willem, 1993)

Nonlinear Schrödinger equations (3)

• Consider the Schrödinger equation with more general nonlinearity

$$-\Delta u + u = f(u), \quad \lim_{|x| \to \infty} u(x) = 0 \text{ in } \mathbb{R}^N$$
(3)

where $f : \mathbb{R} \to \mathbb{R}$ is continuous and satisfies the following conditions :

•
$$(F1) \lim_{t \to 0^+} f(t)/t = 0$$

- ► (F2) $\limsup_{t\to\infty} f(t)/t^p < \infty$ for some $p \in (1, (N+2)/(N-2))$
- $(F3)\frac{1}{2}T^2 < F(T)$ for some T > 0 where $F(t) = \int_0^t f(s) \, ds$
- We call the condition $(F1) \sim (F3)$ the Berestycki-Lions condition.

Nonlinear Schrödinger equations (4)

- There is a positive radial least energy solution of (3). If f is odd, there are infinitely many radial solutions (Berestycki and Lions, 1983)
- Uniqueness of the positive solution of (3) is not known.
- Any least energy solution of (3) is radially symmetric up to translation (Byeon, Jeanjean and Maris, 2009)
- The Berestycki-Lions condition is almost optimal for the existence.

Nonlinear Schrödinger-Poisson equations

• Consider the following system of equations (NSP system)

$$\begin{cases} -\Delta u + u + \lambda \phi u = |u|^{p-2}u, \\ -\Delta \phi = u^2, \quad \lim_{|x| \to \infty} \phi(x) = 0 \end{cases}$$
(4)

where $|u|^2 : \mathbb{R}^3 \to \mathbb{R}$: particle density $\phi : \mathbb{R}^3 \to \mathbb{R}$: electric potential $\lambda \in \mathbb{R}$: coupling constant

• This system describes systems of identically charged particles interacting each other in the case that magnetic effects could be ignored, and its solution is, in particular, a standing wave for such a system.

Reducing to a single equation

• One can solve ϕ in term of $u \in H^1(\mathbb{R}^3)$, i.e.,

$$\phi_u(x) = \int_{\mathbb{R}^3} \frac{u^2(y)}{4\pi |x-y|^2} \, dy \in D^{1,2}(\mathbb{R}^3) \tag{5}$$

where $D^{1,2}(\mathbb{R}^3) = \{ v \in L^6(\mathbb{R}^3) | \nabla v \in L^2(\mathbb{R}^3) \}.$

Define an energy functional

$$I(u) = \frac{1}{2} ||u||^2 + \frac{\lambda}{4} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{u^2(x)u^2(y)}{4\pi |x-y|} dy dx - \frac{1}{p} \int_{\mathbb{R}^3} |u|^p dx \qquad (6)$$

where $u \in H^1(\mathbb{R}^3)$, $||u||^2 = \int_{\mathbb{R}^3} |\nabla u|^2 + u^2 \, dx$.

• Then, a critical point $u \in H^1(\mathbb{R}^3)$ is a solution of

$$-\Delta u + u + \lambda \phi_u u = |u|^{p-2} u. \tag{7}$$

- 3

Known results (when $\lambda > 0$)

• If $3 , there is a positive radial solution for all <math>\lambda > 0$ (Ruiz, 2006).

If $2 , there is no solution for <math>\lambda \ge 1/4$ and there are at least two solutions for sufficiently small $\lambda > 0$ (Ruiz, 2006).

- There is a positive least energy solution for $3 and all <math>\lambda > 0$ (Azzollini and Pomponio, 2008).
- There are infinitely many radial solutions for $3 and all <math>\lambda > 0$ (Ambrosetti and Ruiz, 2008).

Questions (when $\lambda > 0$)

- Question 1 Is any positive solution radially symmetric up to translation? ← Not known

Consider a problem

$$\begin{cases} -\Delta u + u + \phi u = f(u), \\ -\Delta \phi = u^2, \quad \lim_{|x| \to \infty} \phi(x) = 0 \end{cases}$$
(8)

We remind that if f(u) = |u|u, there is no solution but if $f(u) = |u|^{p-1}u$, 2 , there are infinitely many solution.

• Question 3 If $f(u) = |u|u \log |u|$, is there a solution? \leftarrow YES

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Answers to Questions 3 and 4

Theorem (Kim and S, 2011)

For 4 , Choose an arbitrary natural number k. then there exists a solution of NSP system changing sign exactly k-times.

Theorem (S, 2011)

For the nonlinearity $f(u) = |u|u \log |u|$, there exist infinitely many solutions of NSP system.

くほと くほと くほと

Idea of proof of the first theorem (1)

We introduce some notations. Fix $k \in \mathbb{N}$.

•
$$\Lambda := \{r = (r_1, \cdots, r_k) \mid 0 =: r_0 < r_1 < \cdots < r_k < r_{k+1} := \infty\}$$

•
$$A_{i,r} := \{x \in \mathbb{R}^3 : r_{i-1} < |x| < r_i\}$$
 for $i = 1, \cdots, k+1$ and $r \in \Lambda$

•
$$H_{i,r} := \{ u \in L^2(A_{i,r}) : |\nabla u| \in L^2(A_{i,r}), u(x) = u(|x|), u = 0 \text{ on } \partial A_{i,r} \}$$

•
$$\widetilde{H}_r = H_{1,r} \times \cdots \times H_{k+1,r}$$

•
$$||u||_{i,r} := \int_{A_{i,r}} (u^2 + |\nabla u|^2)$$

< 67 ▶

Idea of proof of the first theorem (2)

• Define an energy functional $E_r: \widetilde{H} \to \mathbb{R}$ by

$$E_{r}(u_{1}, \cdots, u_{k+1}) = \frac{1}{2} \sum_{i=1}^{k+1} ||u_{i}||_{i,r}^{2} + \frac{1}{4} \sum_{i,j} \int_{A_{i,r}} \int_{A_{i,r}} \frac{u_{i}^{2}(x)u_{i}^{2}(y)}{|x-y|} dy dx - \frac{1}{p} \sum_{i=1}^{k+1} \int_{A_{i,r}} |u_{i}|^{p}$$
(9)

where $u_i \in H_{i,r}$ for $i = 1, \cdots, k + 1$.

• Each component u_i of a critical point (u_1, \dots, u_{k+1}) of E_r satisfies

$$\begin{cases} -\Delta u_{i} + u_{i} + \phi u_{i} = |u_{i}|^{p-2} u_{i} \text{ in } A_{i,r}, \\ -\Delta \phi = \left(\sum_{i=1}^{k+1} u_{i}\right)^{2}, \quad \lim_{|x| \to \infty} \phi(x) = 0. \end{cases}$$
(10)

Idea of proof of the first theorem (3)

Define a set

$$\mathcal{N}_r = \{(u_1, \cdots, u_{k+1}) \in \widetilde{H}_r \mid u_i \neq 0, \partial_{u_i} E_r(u_1, \cdots, u_{k+1}) u_i = 0 \text{ for } \forall i \}$$

• Consider a constrained minimization problem

$$W_r := \min_{u \in \mathcal{N}_r} E_r(u)$$

- Show that W_r is attained by a minimizer $w_r \in N_r$ and every minimizer is a critical point of E_r .
- Redefine w_r as $(|w_1|, -|w_2|, ..., (-1)^{i+1}|w_i|, ..., (-1)^{k+2}|w_{k+1}|)$ Then it is still a minimizer.

Idea of proof of the first theorem (4)

- Minimize $E_r(w_r)$ over all $r \in \Lambda$. Show that there is a minimizer r_0 .
- Finally, show that w_{r_0} solves the problem in whole domain \mathbb{R}^3 . In other words, it solves the problem at $\partial A_{i,r_0}$ for all *i*.

Here are some comments.

- We need the restriction of the range of p ∈ (4, 6) to attain W_r for each r ∈ Λ.
- For case of remaining range of $p \in (3, 4)$, problem is still open.

Second theorem

In fact, we can prove the following more general result.

Theorem (S,2011)

Suppose the following structure conditions hold

- (F1) f is continuous and odd;
- (F2) $\lim_{t\to 0} f(t)/t = 0$, $\limsup_{t\to\infty} f(t)/t^p < \infty$ for some $p \in (1,5)$;
- (F3) $\frac{2f(t)}{t^2} \frac{F(t)}{t^3}$ increase to infinity as $t \to \infty$.

Then there exist infinitely many radial solutions of (8).

Note that $f(t) = |t| t \log |t|$ satisfies $(F1) \sim (F3)$.

Known results (when $\lambda < 0$)

Consider the nonlinear Schrödinger-Poisson equation with negative λ :

$$-\Delta u + u + \lambda \phi_u u = f(u). \tag{11}$$

- If $f(u) = -|u|^{p-2}u$, $2 , there is a positive radial solution for all <math>\lambda < 0$ (Mugnai, 2011).
- If f(u) = −|u|^{p−2}u, 4 ≤ p < 6, there is a positive radial solution for countably many λ < 0 (Mugnai, 2011).

Questions (when $\lambda < 0$)

Question 4 For 4 ≤ p < 6 and f(u) = −|u|^{p−2}u, can we widen the existence range of λ < 0?

 \leftarrow YES (for sufficiently large $|\lambda|$, there is a solution)

• Question 5 For the nonlinearity $|u|^{p-2}u$, is there a solution?

 \leftarrow YES (for sufficiently large $|\lambda|$, there is a solution)

Answers for Question 4 and 5

Theorem (Jeong and S, 2012)

Suppose that $\lambda < 0$ and f satisfies

(F1) $f : \mathbb{R} \to \mathbb{R}$ is continuous.

(F2) $\lim_{s\to 0} f(s)/s = 0$ and $\lim_{|s|\to\infty} |f(s)|/|s|^p < \infty$ for some $p \in (1,5)$.

Then, for sufficiently large $|\lambda|$, there exists a solution.

Idea of proof (1)

• By defining $u(x) = \varepsilon v(x)$ with $\varepsilon = 1/\sqrt{-\lambda}$, the equation is equivalent to

$$-\Delta v + v - \phi_v v = f_{\varepsilon}(v) \qquad \text{in } \mathbb{R}^3, \tag{12}$$

where

$$f_{\varepsilon}(v) = \frac{1}{\varepsilon} f(\varepsilon v)$$

and we easily see that $f_{\varepsilon}(v) \rightarrow 0$ as $\varepsilon \rightarrow 0$ from (F2).

• As $\varepsilon \to 0$, we obtain an equation

$$-\Delta v + v - \phi_v v = 0 \qquad \text{in } \mathbb{R}^3,$$

which is called the Choquard equation.

Idea of proof (2)

• Define a functional $I_{\varepsilon}(u) = I_0(u) + J_{\varepsilon}(u)onH := H^1_r(\mathbb{R}^3)$ by

$$I_0(u) = \frac{1}{2} \|u\|^2 - \frac{1}{4} \int_{\mathbb{R}^3} \phi_u u^2 \, dx, \quad J_{\varepsilon}(u) = \int_{\mathbb{R}^3} F_{\varepsilon}(u) \, dx,$$

where $F_{\varepsilon}(u) = \frac{1}{\varepsilon^2}F(\varepsilon u)$.

- A critical point of I_{ε} is a solution of our problem.
- We want to find a critical point of *I*_ε for sufficiently small ε > 0, i.e., for sufficiently large |λ|.
- Since $J_{\varepsilon}(u) \to 0$ as $\varepsilon \to 0$, I_{ε} is a small perturbation of I_0 for small $\varepsilon > 0$.

Idea of proof (3)

(M1) $I_0(0) = 0$, there exist c, r > 0 such that if ||u|| = r, then $I_0(u) \ge c$ and there exists a $v_0 \in H$ such that $||v_0|| > r$ and $I_0(v_0) < 0$; (M2) there exists a critical point $u_0 \in H$ of I_0 such that

$$I_0(u_0) = C_0 := \min_{\gamma \in \Gamma} \max_{s \in [0,1]} I_0(\gamma(s)),$$

where $\Gamma = \{\gamma \in C([0, 1], H) \mid \gamma(0) = 0, \ \gamma(1) = v_0\};$ (M3) it holds that

$$C_0 = \inf_{\{u \in H | I'_0(u) = 0, u \neq 0\}} I_0(u);$$

(M4) the set $S := \{u \in H \mid I'_0(u) = 0, I_0(u) = C_0\}$ is compact in H; (M5) there exists a curve $\gamma_0(s) \in \Gamma$ passing through u_0 at $s = s_0$ and satisfying

$$I_0(u_0) > I_0(\gamma_0(s))$$
 for all $s \neq s_0$.

(J) J_{ε} and J'_{ε} are compact and satisfy for any M>0,

$$\lim_{\varepsilon \to 0} \sup_{\|u\| \le M} |J_{\varepsilon}(u)| = \lim_{\varepsilon \to 0} \sup_{\|u\| \le M} \|J_{\varepsilon}'(u)\| = 0;$$

Idea of proof (4)

ullet We define a modified mountain pass energy level of I_{ε}

$$C_{arepsilon} = \min_{\gamma \in \Gamma_M} \max_{s \in [0,1]} I_{arepsilon}(\gamma(s)),$$

where

$$\Gamma_{M} = \left\{ \gamma \in \Gamma \mid \sup_{s \in [0,1]} \|\gamma(s)\| \le M \right\}$$
$$M := 2 \max \left\{ \sup_{u \in S} \|u\|, \sup_{s \in [0,1]} \|\gamma_{0}(s)\| \right\}.$$

• By the choice of *M*, we see that $\gamma_0 \in \Gamma_M$ and thus

$$C_0 = \min_{\gamma \in \Gamma_M} \max_{s \in [0,1]} I_0(\gamma(s)).$$

3

Idea of proof (5)

• We can prove that $\lim_{\epsilon \to 0} C_{\epsilon} = C_0$.

Assume that there is no critical point of *I_ε* on any small neighborhood of *S*. Then, we can deform *γ*₀(*s*) along the direction of −*I'_ε* and obtain a curve *γ̃*(*s*) ∈ Γ_M satisfying

$$\max_{s\in[0,1]}I_{\varepsilon}(\tilde{\gamma}(s))\leq \max_{s\in[0,1]}I_{\varepsilon}(\gamma_{0}(s))-\delta=C_{0}-\delta,$$

where $\delta > 0$ is a constant independent of $\varepsilon > 0$.

• Then, for small $\varepsilon > 0$, we see $\max_{s \in [0,1]} I_{\varepsilon}(\tilde{\gamma}(s)) < C_{\varepsilon}$, which is a contradiction.

Thank you for your attention!

-

3

< 17 ▶