Existence results about the nonlinear Schrödinger-Poisson equations

Jinmyoung Seok
Department of Mathematical Sciences
Seoul National University

December 1, 2012

Nonlinear Schrödinger equations (1)

- For $N \geq 2$, consider the following equation

$$
\begin{equation*}
-\Delta u+u=|u|^{p-2} u, \quad \lim _{|x| \rightarrow \infty} u(x)=0 \text { in } \mathbb{R}^{N} \tag{1}
\end{equation*}
$$

where $p \in\left(2,2^{*}\right), \quad 2^{*}=2 N /(N-2)$ if $N>2$ and $2^{*}=\infty$ if $N=2$.

- $\tilde{u} \in H^{1}\left(\mathbb{R}^{N}\right)$ is a solution $\Leftrightarrow \tilde{u}$ is a critical point of the functional

$$
\begin{equation*}
I(u)=\int_{\mathbb{R}^{N}}|\nabla u|^{2}+|u|^{2}-\frac{1}{p}|u|^{p} d x, \quad u \in H^{1}\left(\mathbb{R}^{N}\right) \tag{2}
\end{equation*}
$$

Nonlinear Schrödinger equations (2)

- There is a positive radial solution and are infinitely many radial solutions of (1) (Strauss, 1977)
- There is no nontrivial solution for $p \geq 2^{*}$.
- The positive radial solution of (1) is unique (Kwong, 1989)
- Every positive solution of (1) is radially symmetric about some point in \mathbb{R}^{N} (Gidas, Ni and Nirenberg, 1981)
- There exists a k-sign changing radial solution of (1) for given $k \in \mathbb{N}$ (Bartsch and Willem, 1993)

Nonlinear Schrödinger equations (3)

- Consider the Schrödinger equation with more general nonlinearity

$$
\begin{equation*}
-\Delta u+u=f(u), \quad \lim _{|x| \rightarrow \infty} u(x)=0 \text { in } \mathbb{R}^{N} \tag{3}
\end{equation*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and satisfies the following conditions:

- $(F 1) \lim _{t \rightarrow 0^{+}} f(t) / t=0$
- (F2) $\lim \sup _{t \rightarrow \infty} f(t) / t^{p}<\infty$ for some $p \in(1,(N+2) /(N-2))$
- (F3) $\frac{1}{2} T^{2}<F(T)$ for some $T>0$ where $F(t)=\int_{0}^{t} f(s) d s$
- We call the condition $(F 1) \sim(F 3)$ the Berestycki-Lions condition.

Nonlinear Schrödinger equations (4)

- There is a positive radial least energy solution of (3). If f is odd, there are infinitely many radial solutions (Berestycki and Lions, 1983)
- Uniqueness of the positive solution of (3) is not known.
- Any least energy solution of (3) is radially symmetric up to translation (Byeon, Jeanjean and Maris, 2009)
- The Berestycki-Lions condition is almost optimal for the existence.

Nonlinear Schrödinger-Poisson equations

- Consider the following system of equations (NSP system)

$$
\left\{\begin{array}{l}
-\Delta u+u+\lambda \phi u=|u|^{p-2} u \tag{4}\\
-\Delta \phi=u^{2}, \quad \lim _{|x| \rightarrow \infty} \phi(x)=0
\end{array}\right.
$$

where
$|u|^{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}:$ particle density
$\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$: electric potential
$\lambda \in \mathbb{R}$: coupling constant

- This system describes systems of identically charged particles interacting each other in the case that magnetic effects could be ignored, and its solution is, in particular, a standing wave for such a system.

Reducing to a single equation

- One can solve ϕ in term of $u \in H^{1}\left(\mathbb{R}^{3}\right)$, i.e.,

$$
\begin{equation*}
\phi_{u}(x)=\int_{\mathbb{R}^{3}} \frac{u^{2}(y)}{4 \pi|x-y|^{2}} d y \in D^{1,2}\left(\mathbb{R}^{3}\right) \tag{5}
\end{equation*}
$$

where $D^{1,2}\left(\mathbb{R}^{3}\right)=\left\{v \in L^{6}\left(\mathbb{R}^{3}\right) \mid \nabla v \in L^{2}\left(\mathbb{R}^{3}\right)\right\}$.

- Define an energy functional

$$
\begin{equation*}
I(u)=\frac{1}{2}\|u\|^{2}+\frac{\lambda}{4} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{u^{2}(x) u^{2}(y)}{4 \pi|x-y|} d y d x-\frac{1}{p} \int_{\mathbb{R}^{3}}|u|^{p} d x \tag{6}
\end{equation*}
$$

where $u \in H^{1}\left(\mathbb{R}^{3}\right),\|u\|^{2}=\int_{\mathbb{R}^{3}}|\nabla u|^{2}+u^{2} d x$.

- Then, a critical point $u \in H^{1}\left(\mathbb{R}^{3}\right)$ is a solution of

$$
\begin{equation*}
-\Delta u+u+\lambda \phi_{u} u=|u|^{p-2} u \tag{7}
\end{equation*}
$$

Known results (when $\lambda>0$)

- If $3<p<6$, there is a positive radial solution for all $\lambda>0$ (Ruiz, 2006).

If $2<p \leq 3$, there is no solution for $\lambda \geq 1 / 4$ and there are at least two solutions for sufficiently small $\lambda>0$ (Ruiz, 2006).

- There is a positive least energy solution for $3<p<6$ and all $\lambda>0$ (Azzollini and Pomponio, 2008).
- There are infinitely many radial solutions for $3<p<6$ and all $\lambda>0$ (Ambrosetti and Ruiz, 2008).

Questions (when $\lambda>0$)

- Question 1 Is any positive solution radially symmetric up to translation? \leftarrow Not known
- Question 2 Are there sign changing solutions? $\leftarrow \quad$ YES for $4<p<6$ and every $\lambda>0$

Consider a problem

$$
\left\{\begin{array}{l}
-\Delta u+u+\phi u=f(u) \tag{8}\\
-\Delta \phi=u^{2}, \quad \lim _{|x| \rightarrow \infty} \phi(x)=0
\end{array}\right.
$$

We remind that if $f(u)=|u| u$, there is no solution but if $f(u)=|u|^{p-1} u$, $2<p<6$, there are infinitely many solution.

- Question 3 If $f(u)=|u| u \log |u|$, is there a solution? $\leftarrow \mathrm{YES}$

Answers to Questions 3 and 4

Theorem (Kim and S, 2011)
For $4<p<6$, Choose an arbitrary natural number k. then there exists a solution of NSP system changing sign exactly k-times.

Theorem (S, 2011)
For the nonlinearity $f(u)=|u| u \log |u|$, there exist infinitely many solutions of NSP system.

Idea of proof of the first theorem (1)

We introduce some notations. Fix $k \in \mathbb{N}$.

- $\Lambda:=\left\{r=\left(r_{1}, \cdots, r_{k}\right) \mid 0=: r_{0}<r_{1}<\cdots<r_{k}<r_{k+1}:=\infty\right\}$
- $A_{i, r}:=\left\{x \in \mathbb{R}^{3}: r_{i-1}<|x|<r_{i}\right\}$ for $i=1, \cdots, k+1$ and $r \in \Lambda$
- $H_{i, r}:=\left\{u \in L^{2}\left(A_{i, r}\right):|\nabla u| \in L^{2}\left(A_{i, r}\right), u(x)=u(|x|)\right.$,

$$
\left.u=0 \text { on } \partial A_{i, r}\right\}
$$

- $\widetilde{H}_{r}=H_{1, r} \times \cdots \times H_{k+1, r}$
- $\|u\|_{i, r}:=\int_{A_{i, r}}\left(u^{2}+|\nabla u|^{2}\right)$

Idea of proof of the first theorem (2)

- Define an energy functional $E_{r}: \widetilde{H} \rightarrow \mathbb{R}$ by

$$
\begin{align*}
& E_{r}\left(u_{1}, \cdots, u_{k+1}\right)=\frac{1}{2} \sum_{i=1}^{k+1}\left\|u_{i}\right\|_{i, r}^{2}+\frac{1}{4} \sum_{i, j} \int_{A_{i, r}} \int_{A_{i, r}} \frac{u_{i}^{2}(x) u_{i}^{2}(y)}{|x-y|} d y d x \\
&-\frac{1}{p} \sum_{i=1}^{k+1} \int_{A_{i, r}}\left|u_{i}\right|^{p} \tag{9}
\end{align*}
$$

where $u_{i} \in H_{i, r}$ for $i=1, \cdots, k+1$.

- Each component u_{i} of a critical point $\left(u_{1}, \cdots, u_{k+1}\right)$ of E_{r} satisfies

$$
\left\{\begin{array}{l}
-\Delta u_{i}+u_{i}+\phi u_{i}=\left|u_{i}\right|^{p-2} u_{i} \text { in } A_{i, r}, \tag{10}\\
-\Delta \phi=\left(\sum_{i=1}^{k+1} u_{i}\right)^{2}, \quad \lim _{|x| \rightarrow \infty} \phi(x)=0
\end{array}\right.
$$

Idea of proof of the first theorem (3)

- Define a set

$$
\mathcal{N}_{r}=\left\{\left(u_{1}, \cdots, u_{k+1}\right) \in \widetilde{H}_{r} \mid u_{i} \neq 0, \partial_{u_{i}} E_{r}\left(u_{1}, \cdots, u_{k+1}\right) u_{i}=0 \text { for } \forall i\right\}
$$

- Consider a constrained minimization problem

$$
W_{r}:=\min _{u \in \mathcal{N}_{r}} E_{r}(u)
$$

- Show that W_{r} is attained by a minimizer $w_{r} \in \mathcal{N}_{r}$ and every minimizer is a critical point of E_{r}.
- Redefine w_{r} as $\left(\left|w_{1}\right|,-\left|w_{2}\right|, \ldots,(-1)^{i+1}\left|w_{i}\right|, \ldots,(-1)^{k+2}\left|w_{k+1}\right|\right)$ Then it is still a minimizer.

Idea of proof of the first theorem (4)

- Minimize $E_{r}\left(w_{r}\right)$ over all $r \in \Lambda$. Show that there is a minimizer r_{0}.
- Finally, show that $w_{r_{0}}$ solves the problem in whole domain \mathbb{R}^{3}. In other words, it solves the problem at $\partial A_{i, r_{0}}$ for all i.

Here are some comments.

- We need the restriction of the range of $p \in(4,6)$ to attain W_{r} for each $r \in \Lambda$.
- For case of remaining range of $p \in(3,4)$, problem is still open.

Second theorem

In fact, we can prove the following more general result.

Theorem $(\mathrm{S}, 2011)$

Suppose the following structure conditions hold

- (F1) f is continuous and odd;
- (F2) $\lim _{t \rightarrow 0} f(t) / t=0, \lim \sup _{t \rightarrow \infty} f(t) / t^{p}<\infty$ for some $p \in(1,5)$;
- (F3) $\frac{2 f(t)}{t^{2}}-\frac{F(t)}{t^{3}}$ increase to infinity as $t \rightarrow \infty$.

Then there exist infinitely many radial solutions of (8).

Note that $f(t)=|t| t \log |t|$ satisfies $(F 1) \sim(F 3)$.

Known results (when $\lambda<0$)

Consider the nonlinear Schrödinger-Poisson equation with negative λ :

$$
\begin{equation*}
-\Delta u+u+\lambda \phi_{u} u=f(u) \tag{11}
\end{equation*}
$$

- If $f(u)=-|u|^{p-2} u, 2<p<4$, there is a positive radial solution for all $\lambda<0$ (Mugnai, 2011).
- If $f(u)=-|u|^{p-2} u, 4 \leq p<6$, there is a positive radial solution for countably many $\lambda<0$ (Mugnai, 2011).

Questions (when $\lambda<0$)

- Question 4 For $4 \leq p<6$ and $f(u)=-|u|^{p-2} u$, can we widen the existence range of $\lambda<0$?
\leftarrow YES (for sufficiently large $|\lambda|$, there is a solution)
- Question 5 For the nonlinearity $|u|^{p-2} u$, is there a solution?
\leftarrow YES (for sufficiently large $|\lambda|$, there is a solution)

Answers for Question 4 and 5

Theorem (Jeong and S, 2012)
Suppose that $\lambda<0$ and f satisfies
(F1) $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
(F2) $\lim _{s \rightarrow 0} f(s) / s=0$ and $\lim \sup _{|s| \rightarrow \infty}|f(s)| /|s|^{p}<\infty$ for some $p \in(1,5)$.
Then, for sufficiently large $|\lambda|$, there exists a solution.

Idea of proof (1)

- By defining $u(x)=\varepsilon v(x)$ with $\varepsilon=1 / \sqrt{-\lambda}$, the equation is equivalent to

$$
\begin{equation*}
-\Delta v+v-\phi_{v} v=f_{\varepsilon}(v) \quad \text { in } \mathbb{R}^{3} \tag{12}
\end{equation*}
$$

where

$$
f_{\varepsilon}(v)=\frac{1}{\varepsilon} f(\varepsilon v)
$$

and we easily see that $f_{\varepsilon}(v) \rightarrow 0$ as $\varepsilon \rightarrow 0$ from (F2).

- As $\varepsilon \rightarrow 0$, we obtain an equation

$$
-\Delta v+v-\phi_{v} v=0 \quad \text { in } \mathbb{R}^{3}
$$

which is called the Choquard equation.

Idea of proof (2)

- Define a functional $I_{\varepsilon}(u)=I_{0}(u)+J_{\varepsilon}(u)$ onH $:=H_{r}^{1}\left(\mathbb{R}^{3}\right)$ by

$$
I_{0}(u)=\frac{1}{2}\|u\|^{2}-\frac{1}{4} \int_{\mathbb{R}^{3}} \phi_{u} u^{2} d x, \quad J_{\varepsilon}(u)=\int_{\mathbb{R}^{3}} F_{\varepsilon}(u) d x
$$

where $F_{\varepsilon}(u)=\frac{1}{\varepsilon^{2}} F(\varepsilon u)$.

- A critical point of I_{ε} is a solution of our problem.
- We want to find a critical point of I_{ε} for sufficiently small $\varepsilon>0$, i.e., for sufficiently large $|\lambda|$.
- Since $J_{\varepsilon}(u) \rightarrow 0$ as $\varepsilon \rightarrow 0, I_{\varepsilon}$ is a small perturbation of I_{0} for small $\varepsilon>0$.

Idea of proof (3)

(M1) $I_{0}(0)=0$, there exist $c, r>0$ such that if $\|u\|=r$, then $I_{0}(u) \geq c$ and there exists a $v_{0} \in H$ such that $\left\|v_{0}\right\|>r$ and $I_{0}\left(v_{0}\right)<0$;
(M2) there exists a critical point $u_{0} \in H$ of I_{0} such that

$$
I_{0}\left(u_{0}\right)=C_{0}:=\min _{\gamma \in \Gamma} \max _{s \in[0,1]} I_{0}(\gamma(s))
$$

where $\Gamma=\left\{\gamma \in C([0,1], H) \mid \gamma(0)=0, \gamma(1)=v_{0}\right\}$;
(M3) it holds that

$$
C_{0}=\inf _{\left\{u \in H \mid I_{0}^{\prime}(u)=0, u \neq 0\right\}} I_{0}(u) ;
$$

(M4) the set $S:=\left\{u \in H \mid I_{0}^{\prime}(u)=0, I_{0}(u)=C_{0}\right\}$ is compact in H;
(M5) there exists a curve $\gamma_{0}(s) \in \Gamma$ passing through u_{0} at $s=s_{0}$ and satisfying

$$
I_{0}\left(u_{0}\right)>I_{0}\left(\gamma_{0}(s)\right) \quad \text { for all } s \neq s_{0}
$$

(J) J_{ε} and J_{ε}^{\prime} are compact and satisfy for any $M>0$,

$$
\lim _{\varepsilon \rightarrow 0} \sup _{\|u\| \leq M}\left|J_{\varepsilon}(u)\right|=\lim _{\varepsilon \rightarrow 0} \sup _{\|u\| \leq M}\left\|J_{\varepsilon}^{\prime}(u)\right\|=0
$$

Idea of proof (4)

- We define a modified mountain pass energy level of I_{ε}

$$
C_{\varepsilon}=\min _{\gamma \in \Gamma_{M}} \max _{s \in[0,1]} I_{\varepsilon}(\gamma(s)),
$$

where

$$
\begin{gathered}
\Gamma_{M}=\left\{\gamma \in \Gamma \mid \sup _{s \in[0,1]}\|\gamma(s)\| \leq M\right\} \\
M:=2 \max \left\{\sup _{u \in S}\|u\|, \sup _{s \in[0,1]}\left\|\gamma_{0}(s)\right\|\right\} .
\end{gathered}
$$

- By the choice of M, we see that $\gamma_{0} \in \Gamma_{M}$ and thus

$$
C_{0}=\min _{\gamma \in \Gamma_{M}} \max _{s \in[0,1]} I_{0}(\gamma(s))
$$

Idea of proof (5)

- We can prove that $\lim _{\varepsilon \rightarrow 0} C_{\varepsilon}=C_{0}$.
- Assume that there is no critical point of I_{ε} on any small neighborhood of S. Then, we can deform $\gamma_{0}(s)$ along the direction of $-l_{\varepsilon}^{\prime}$ and obtain a curve $\tilde{\gamma}(s) \in \Gamma_{M}$ satisfying

$$
\max _{s \in[0,1]} I_{\varepsilon}(\tilde{\gamma}(s)) \leq \max _{s \in[0,1]} I_{\varepsilon}\left(\gamma_{0}(s)\right)-\delta=C_{0}-\delta
$$

where $\delta>0$ is a constant independent of $\varepsilon>0$.

- Then, for small $\varepsilon>0$, we see $\max _{s \in[0,1]} I_{\varepsilon}(\tilde{\gamma}(s))<C_{\varepsilon}$, which is a contradiction.

Thank you for your attention!

